

Очистка нефти и нефтепродуктов от серы

СОДЕРЖАНИЕ

1.	Проблема очистки нефтепродуктов от серы	3
2.	Ограничения существующей технологии	4
3.	Комплексный подход к вопросу очистки нефти и нефтепродуктов от серы	5
4.	Преимущества технологии	6
5.	Блочно-модульная установка обессеривания	7
6.	Отходы и способ утилизации	8
7.	Контактная информация	9

Проблема очистки нефтепродуктов от серы

- 1. Экологическая проблема при сжигании сернистого топлива (с высоким содержанием серы) в атмосферу выделяются вредные газы (SO₂ и SO₃)
- 2. Коррозионная агрессивность топлива и усиленное смолообразование в топливной аппаратуре
- 3. Хранение и транспортировка топлива

Ужесточение требований к качеству моторных и печных топлив:

- 1. Использование топлива с содержанием серы до 10 ppm, экологический стандарт качества топлива EBPO-5.
- 2. Выпуск в обращение и обращение автомобильного бензина экологического класса К4 допускается на территории: Российской Федерации по 31 декабря 2015 года.
- 3. Выпуск в обращение и обращение дизельного топлива экологического класса К4 допускается на территории: Российской Федерации по 31 декабря 2015 года.

Ограничения существующей технологии

Гидроочистка - процесс химической конверсии серы в серосодержащих соединениях в сероводород на катализаторах в среде водорода при высоких давлениях и температуре.

Гидроочистка имеет ряд существенных ограничений, а именно:

- **»** высокие капитальные и эксплуатационные затраты, обусловленные наличием двух ступеней гидрирования с большой загрузкой катализатора;
- > сложная технологическая схема процесса
- тутем значительного ужесточения условий процесса

Комплексный подход к вопросу очистки нефти и нефтепродуктов от серы

Технология каталитического обессеривания – это сочетание окисления серосодержащих соединений до сульфонов, с последующей их адсорбцией.

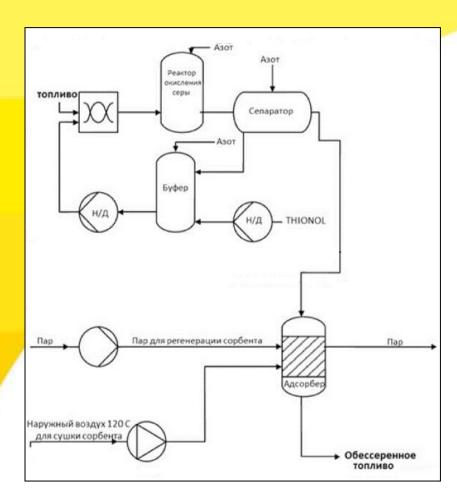
В процессе обессеривания углеводородов на первом этапе происходит окисление углеводородного потока жидкофазным катализатором в окислительном узле, на втором этапе происходит адсорбция сернистых соединений и регенерацией сорбента.

Процесс окисления и адсорбции проходит при обычной температуре в диапазоне от 20 до 40 °С и давлении до 4 АТМ.

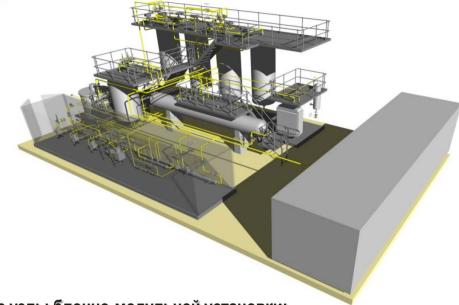
Основные параметры внедрения технологии обессеривания:

- снижение общей серы менее 10 ppm;
- мощность установки обессеривания 50 000 тон/год;
- исполнение блочно-модульное;
- размер площадки под установку 15м на 15 м;
- ➤ срок реализации проекта «под ключ» 7-9 месяцев;
- монтаж и эксплуатация оборудования при любых климатических условиях

Преимущества технологии


- снижение общей серы до уровня менее 10 ppm;
- низкие капитальные затраты;
- срок проектирования, изготовления и монтажа 7-9 месяцев;
- технологические потери от 4 до 10 кг/тонну сырья;
- не применяется водород;
- простота обслуживания;
- увеличение потока топлива;
- возможность использования установки для обессеривания других продуктов;
- возможность размещения максимального количества оборудования на открытых площадках;
- обеспечение кратчайших протяженностей технологических, энергетических и инженерных коммуникаций;
- строгое соблюдение экологических норм;
- обширная география поставки и установки оборудования.

Достоинством каталитического обессеривания в ее технологической гибкости и адаптации, процесс может успешно работать на любом промежутке технологической цепочки, заменяя или просто дополняя существующие на НПЗ технологии сероочистки.



Блочно-модульная установка обессеривания

Принципиальная схема установки

Основные узлы блочно-модульной установки:

- Узел подачи топлива со склада сырья на установку очистки предназначен для бесперебойной подачи и учета топлива.
- Узел подогрева топлива предназначен для подогрева топлива до рабочей температуры (40°С) в пластинчатом теплообменнике.
- Узел окисления топлива предназначен для окисления топлива жидкофазным каталитическим комплексом, отделения топлива от каталитического комплекса и подачи окисленного топлива на узел адсорбции.
- Узел адсорбции предназначен для адсорбции окисленных сераорганических соединений из топлива до значений менее 10 ppm.

Отходы и способ утилизации

№ п/п	Наименование отходов	Периодичность образования		
1.	Отработанной катализатор	постоянно	Подается на очистные сооружения совместно другими общезаводскими отходами.	
2.	Кубовый остаток регенерации растворителя	постоянно	Растворим в остаточном топливе. Можно добавлять в остаточные топлива. Либо подавать на очистные сооружения совместно другими общезаводскими отходами.	

Примерный состав смеси отработанного катализатора THIONOL

Marasinear opa Timorroz							
Nº	Наименование показателя	Ед.	Значение				
1	Производные водорастворимых органических кислот	% вес.	12				
2	Органические соединения серы (сульфоны)	% вес.	7				
3	Вода	% вес.	85				
Прочие показатели							
1	Плотность	К г/м³	1000				
2	рН		3-4				
3	Цвет		желтый				

Примерный состав кубового остатка регенерации сорбента

Nº	Наименование показателя	Ед.	Значение			
1	Бензотиофеноксид и его алкилпроизводные	% вес.	35			
2	Сульфоны бензотиофена и его алкилпроизводных	% вес.	5			
3	Дибензотиофеноксид и его алкилпроизводные	% вес.	10			
4	Сульфоны дибензотиофена и его алкилпроизводных	% вес.	25			
5	Побочные продукты окисления производных нафталина (бензохиноны, нафталинкарбоновые кислоты)	% вес.	2			
6	Вода	% вес.	23			
Прочие показатели						
1	Плотность	К г/м ³	1200			
2	рН		6-7			
3	Цвет		Грязно- желтый			

Контактная информация

Свидетельство СРО на проектноизыскательные работы

Свидетельство СРО на строительномонтажные работы

ООО «ХИММАШ-АППАРАТ»

Россия, 109428, г. Москва, Рязанский проспект, д. 24, корп.2 тел./факс +7 (495) 2-680-680, +7(495) 669-93-35 info@him-apparat.ru

WWW.HIM-APPARAT.RU

Сертификат ISO 9001

